(1) In the following graph, approximate the following: (1 point each)

a) Coordinates for any local minimums: \qquad
b) Coordinates for any local maximums: $(-3,0)$
c) Value of absolute minimum (if any): \qquad
d) Value of absolute maximum (if any): 25
e) x coordinate that yields absolute maximum (if any): -10
(2) True or False:
a) Local extrema can only occur at critical numbers. \qquad
b) Everywhere there is an absolute extremum there must also be a local extremum. FQ/8e
c) If $x=a$ is a critical number then $f(a)$ is either a local max or a min. \qquad
d) Not every function has an absolute maximum \qquad
e) Local extrema cannot occur at the end point of a domain \qquad
(3). Find the critical numbers: (2 points each)
a)

$$
f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+3
$$

a few notes a long
$f^{\prime}(x)=x^{2}-x-2$ the way to clarify

$$
f^{\prime}(x)=0 \Rightarrow x^{2}-x-2=0
$$

$$
\begin{aligned}
& x^{2}-x-2=0 \\
& (x-2)(x+1)=0
\end{aligned} \text { Your work }
$$

$$
x=2,-1
$$

b) $\quad f(x)=x(3-x)^{1 / 3}$

$$
\begin{aligned}
f(x)= & x(3-x)^{1 / 3} \\
f^{\prime}(x) & =(3-x)^{1 / 3}+\frac{1}{3} x(3-x)^{-2 / 3}(-1) \\
& =(3-x)^{-2 / 3}\left(3-x-\frac{1}{3} x\right) \\
& =(3-x)^{-2 / 3}\left(3-\frac{4}{3} x\right) \\
& =\frac{3-\frac{4}{3} x}{(3-x)^{2 / 3}}=\frac{9-4 x}{(3-x)^{2 / 3}}
\end{aligned}
$$

$$
f^{\prime}(x)=0
$$

Find the absolute extrema of $\mathrm{f}(\mathrm{x})$ on the given interval (Remember, it is implied you will give the output of the function.)
4) $f(x)=2 \sin x-\cos ^{2} x ;\left[0, \frac{3 \pi}{2}\right] \quad$ (3 points)

Find critical \#s s $f^{\prime}(t)=2 \cos x+2 \cos x \sin x$

$$
x=\pi / 2,3 \pi / 2
$$

$$
\begin{aligned}
& =2 \cos x(1+ \\
& -\sin x=-1
\end{aligned}
$$

$$
f^{\prime}(x)=0 \Rightarrow \cos x=0 \text { or } \sin x=-1
$$

(5). Find the area of the largest rectangle that can be inscribed by the region bound by the graph of $f(x)=\frac{4-x}{2+x}$ and the coordinate axes in the first quadrant. What is the maximum

$$
\begin{aligned}
& A=6 h=x\left(\frac{4-x}{2+x}\right) \\
& A=\frac{4 x-x^{2}}{2+x} \quad 0 \leq x \leq 4
\end{aligned}
$$

special case$f(x)$ counts on closed interval
Find critical \#s

$$
\begin{aligned}
& A^{\prime}(x)=\frac{(2+x)(4-2 x)-\left(4 x-x^{2}\right)}{(2+x)^{2}} \\
& =\frac{-x^{2}-4 x+8}{(2+x)^{2}} \\
& f^{\prime}(x)=0 \Rightarrow-x^{2}-4 x+8=0 \quad x=\frac{4 \pm \sqrt{16+32}}{-2} \\
& f^{\prime}(x) \text { undefined at } x=-2=-2 \pm 2 \sqrt{3} \text {. } \\
& \ln [0,4] \\
& \ln [0,4] \text {, } \\
& x=-2+2 \sqrt{3} \\
& \begin{aligned}
\text { T) dimensions: } \begin{aligned}
x & =-2+2 \sqrt{3} \\
y & =\frac{4-x}{2+x} \Rightarrow \sqrt{3}-1
\end{aligned} \quad \text { Area }=8-4 \sqrt{3}
\end{aligned}
\end{aligned}
$$

